Dimensions, matroids, and dense pairs of first-order structures

نویسنده

  • Antongiulio Fornasiero
چکیده

A structure M is pregeometric if the algebraic closure is a pregeometry in all M ′ elementarily equivalent to M . We define a generalisation: structures with an existential matroid. The main examples are superstable groups of U-rank a power of ω and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding a field, while not pregeometric in general, do have an unique existential matroid. Generalising previous results by L. van den Dries, we define dense elementary pairs of structures expanding a field and with an existential matroid, and we show that the corresponding theories have natural completions, whose models also have a unique existential matroid. We also extend the above result to dense tuples of structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension , matroids , and dense pairs of first - order structures

A structure M is pregeometric if the algebraic closure is a pregeometry in all M ′ elementarily equivalent to M . We define a generalisation: structures with an existential matroid. The main examples are superstable groups of U-rank a power of ω and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding a field, while not pregeometric in general, do have an unique exi...

متن کامل

First order convergence of matroids

The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the BenjaminiSchramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this resul...

متن کامل

Order dense injectivity of $S$-posets

‎‎‎In this paper‎, ‎the‎ notion of injectivity with respect to order dense embeddings in ‎‎the category of $S$-posets‎, ‎posets with a monotone action of a‎ pomonoid $S$ on them‎, ‎is studied‎. ‎We give a criterion‎, ‎like the Baer condition for injectivity of modules‎, ‎or Skornjakov criterion for injectivity of $S$-sets‎, ‎for the order dense injectivity‎. ‎Also‎, ‎we consider such injectivit...

متن کامل

Structural properties of fuzzy graphs

Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study  connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids  from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...

متن کامل

Tutte-martin polynomials and orienting vectors of isotropic systems

Isotropic systems are structures which unify some properties of 4-regular graphs and of pairs of dual binary matroids. In this paper we unify the properties of the symmetric Tutte polynomials (i.e. with equal variables) of binary matroids and of the Martin polynomials of 4-regular graphs. For this purpose we introduce the orienting vectors of an isotropic system in order to generalize the euler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2011